Core Enterprise Services, SOA, and Semantic Technologies: Supporting Semantic Interoperability in a Network-Enabled Environment

2011 SOA & Semantic Technology Symposium
13-14 July 2011

Sven E. Kuehne
sven.kuehne@nc3a.nato.int
Outline

• Why Semantic Interoperability matters
• Core Enterprise Services (CES) and the NATO Core Enterprise Services Framework
• Supporting Semantic Interoperability through CES and Semantic Technologies
• Use Case: 2011 SOA Demonstrator
• Outlook on CES and the use of Semantic Technologies
Bottom Line(s) Up Front

- Multinational coalitions and network-centric operations necessitate the use of semantic technologies to increase semantic interoperability.
- Semantic technologies are an integral part of Core Enterprise Services.
- Core Enterprise Services provide the foundation for semantically-enabled applications to support Communities of Interest and Functional Area Services.
Semantic Interoperability matters!

Some challenges:
• 28 NATO nations, multiple branches per nation
• Dozens of languages besides the two official NATO languages
• Different cultural backgrounds

Semantic Interoperability is a core element of every NATO mission
• Transporting data between two systems is not enough!
• Semantic interoperability problems have always existed.
• Greater reliance to machine-processable information, multinational coalition environments and the dynamicity of network-centric operations.
• Limited capacity for workarounds relying to human smartness.
Motivation

• NATO Network-Enabled Capability (NNEC): Semantic technologies are a key enabler for information superiority

The 4 Rs:
Right information
Right recipient
Right time
Right format

• Service Oriented Architecture and the use of semantic technologies have the potential to increase mission effectiveness.

• Relevant to CIS capabilities and the operational/business context.
SOA-based Core Enterprise Services

- Fundamental support to service-based frameworks, as **infrastructure and enabler services**
- **Single set** of reusable technical, generic (independent of business processes) “minimum required” services
- **Foundation for “higher level” services** (COI-Enabling, COI-Specific, User)
- Interoperability support via an agreed **common core baseline**
- Essential infrastructure services to support **semantic interoperability**
CES Framework

- **Information Assurance Services**
 - Discovery
 - Service Discovery Services
 - Information Discovery Services
 - Infrastructure
 - Application Services
 - Storage Services
- **Common COI Services**
 - Repository
 - Enterprise Directory Services
 - Metadata Registry Services
 - Mediation
 - Composition Services
 - Translation Services
 - Interaction
 - Messaging Services
 - Transaction Services
 - Publish/Subscribe Services
 - Collaboration Services
- **COI-Specific Services**
- **SM&C**
- **Network/Transport Services**

Information and Integration Services
(Core Enterprise Services)
Achieving semantic interoperability:

- Ensure that information is not just transported to the recipient, but also interpreted as intended by the originator.
- The 5th R – Right interpretation!

Support for Semantic Interoperability has to start with Core Enterprise Services and incorporate semantic technologies.

- Semantic technologies provide the glue between the COI and the Information & Integration layers, enabling COIs to use information more efficiently.
Semantic Technologies

Infrastructure to support semantically-enabled applications:
- Mediation services
- Knowledge Stores
- Rule engines
- Metadata and service registries
- Service and Information Discovery services

Separation of the conceptual knowledge from its representation increases reuse, facilitates integration, and ensures better adaptability to new systems:
- Encoding information, e.g. by using RDF, OWL
- Encoding business logic as rules, e.g. SWRL
2011 Norwegian SOA demonstration supported by NC3A

- Models a shared coalition environment
- NC3A acted as the intermediary between various national extensions, provided NATO prototype core enterprise services and end-user applications in the NC3A CES testbed.
2011 SOA Demonstrator
Exchange and use of RDF information

- RDF is used for breaking up system-specific XML artifacts (based on schemas) into smaller units (triples) that are easier to integrate.
- Support for correlation of information from heterogeneous sources (track data, incident data)
Use case: 2011 SOA Demonstrator

Aims (related to SOA and semantic technologies):

• Provide information in multiple formats, serve different C2 systems
• Support information integration from multiple sources.

Key for successful integration and use of these sources: Understanding the semantics of the information!

Diverse information sources; multiple formats; SAME OBJECT!

Consolidated view of information across all sources

Incident data

Track information

Registration data
2011 SOA Demonstrator

Use of Core Enterprise Services to support semantic interoperability:

Service discovery:
Discovery of NVG sources via mDNS/DNS-SD for visualization, UDDI-based discovery of pub/sub topic endpoints and schemas.

Information discovery:
Discovery of information from RDF sources via SPARQL endpoints.

Translation Services:
Data: Transformation of NFFI (NATO Friendly Force Information) track data to NVG (NATO Vector Graphics), KML, and RDF.
Provisioning of JOCWatch incident data as NVG and RDF.

Protocols: NVG to NFFI SIP3 conversion

Publish/Subscribe services:
Provisioning of track and incident data via ESB using WS-Notification.

Collaboration Services:
Use of XMPP chat clients to report 4-liner incident information (via JOCWatch Chat component)
Generalization of services for semantic interoperability:

- Core enterprise services as well as generic COI services for mediation, information integration and reasoning.
- Generation of service interface profiles for supporting semantic interoperability

Focus on COI-level services, using information integrated from different sources and rule-based reasoning, e.g.

- Issue automatic warnings for recent incidents in the projected path of a unit.
- Send automatic requests for support to units that are close enough to an emergency situation.
Related work on Semantic Interoperability

SI Demonstrator for Maritime Situational Awareness
• Prototype of semantically-enabled end-user application
• Integration of commercially available semantic platform with in-house developed technologies

Federated search application
• Prototype for investigating of elements of semantic infrastructure (knowledge stores, reasoners, query translation, metadata registry)
• Technical specification for semantic interoperability

Cross-domain ontology work
• Relating COI-specific concepts through cross-COI, cross-domain ontologies
2011 SOA Demonstrator, Summary

• Increasing semantic interoperability and supporting semantically-enabled COI services starts with Core Enterprise Services!
 – Service and Information Discovery
 – Mediation and Translation services

• The use of established W3C standards (RDF, SPARQL) facilitates the sharing and integration of information from heterogeneous sources.
Outlook

• Awareness of the operational benefits and potential of semantic technologies is still low.
 – Use of RDF and OWL in fielded applications is still very limited, especially in comparison to XML.
 – Some success stories, more are needed.

• Education on creating and using semantically rich representations is required
 – Using RDF and OWL for representing information
 – Transforming schemas into ontologies
 – Capturing operational processes as rules

• Tool support
 – Better, easier to use commercially available tools for developers, domain experts, and knowledge engineers
 – Inference engines, common rule formats/standards
Outlook

• Semantic technologies and SOA can improve information sharing between C2 systems and enable better support for COIs.
• Semantic technologies are not competing with traditional approaches, but will add additional value for information sharing.
• SOA and semantic technologies are the enablers for new functionality to increase semantic interoperability within the Alliance.
Sponsors

Allied Command Transformation (ACT)

NATO C3 Board (C3B)
Contacting the NATO C3 Agency

Brussels

Visiting
Bâtiment Z
Avenue du Bourget 140
B-1110 Brussels, Belgium

Tel +32 (0)2 7074111
Fax +32 (0)2 7078770

Postal
NATO C3 Agency
Boulevard Leopold III
B-1110 Brussels
Belgium

Web www.nc3a.nato.int

The Hague

Visiting
Oude Waalsdorperweg 61
2597 AK The Hague
The Netherlands

Tel +31 (0)70 3743000
Fax +31 (0)70 3743239

Postal
NATO C3 Agency
P.O. Box 174
2501 CD The Hague
The Netherlands

Email info@nc3a.nato.int